Name: \qquad Date: \qquad

Lesson 10.4 Area of Composite Figures

Divide each plane figure into other polygons.

Example

a) Divide the trapezoid into two triangles.

A polygon can be further divided into other polygons with straight lines.
b) Divide the hexagon into two triangles and a rectangle.

2. Divide the octagon into two trapezoids and a rectangle.

Name: \qquad Date: \qquad

Solve. Show your work.

Example

Trapezoid PQRS is made up of square QRST and triangle POT. The area of square ORST is 144 square centimeters. PT is 16 centimeters. Find the area of triangle $P Q T$, and trapezoid $P Q R S$.

Area of square $=\ell^{2}$

A square is a rectangle where the length is the same as its width.

$$
\sqrt{144}=\ell
$$

12
$=\ell$
Area of triangle $=\frac{1}{2} \mathrm{bh}$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{16}{12} \cdot \underline{12} \\
& =96 \mathrm{~cm}^{2}
\end{aligned}
$$

The area of triangle $P Q T$ is 96 square centimeters.

Area of trapezoid PQRS

The side length of the square is also the height of triangle $P Q T$.

$=$ area of square $\mathrm{QRST}+$ area of triangle $P Q T$
$=\underline{144}+\underline{96}$
$=240 \mathrm{~cm}^{2}$
The area of trapezoid PQRS is 240 square centimeters.
3. Trapezoid $M P Q R$ is made up of square $M N Q R$ and triangle $N P Q$. The area of square $M N Q R$ is 81 square feet. $N P$ is 15 feet.
a) Find the area of triangle NPQ.

Area of square $=\ell^{2}$
\qquad

$$
=\ell^{2}
$$

$$
l^{-}=\ell
$$

\qquad

Area of triangle $=\frac{1}{2} \mathrm{bh}$

$$
=\frac{1}{2} .
$$

\qquad -
\qquad ft^{2}

The area of triangle NPQ is \qquad square feet.
b) Find the area of trapezoid $M P Q R$.

Area of trapezoid MPQR
= area of square $M N Q R+$ area of triangle $N P Q$
$=$ \qquad $+$
$=$ \qquad ft^{2}

The area of trapezoid MPQR is \qquad square feet.

Name: \qquad
4. Trapezoid $J K L M$ is made up of square $J K L N$ and triangle $L M N$. The area of triangle $L M N$ is 56 square inches. $N M$ is 16 inches.

a) Find the height of triangle $L M N$.
b) Find the area of square $J K L N$.
c) Find the area of trapezoid JKLM.

Name: \qquad Date: \qquad

Solve. Show your work.

Example

Trapezoid ACDG is made up of parallelogram $A B F G$, triangle $B E F$, and square $B C D E$. The area of trapezoid $A B E G$ is 120 square inches.
Find the area of trapezoid ACDG.
Area of trapezoid $A B E G=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$$
\begin{aligned}
& \frac{120}{120}=\frac{1}{2} \cdot h \cdot\left(\frac{12}{2} \cdot h \cdot \underline{30}+\frac{12}{6}\right) \\
& \frac{120}{120}=\frac{1}{2} \cdot \underline{30} \cdot h \\
& \frac{15}{120} \cdot h
\end{aligned}
$$

\qquad \div \qquad
\qquad $\cdot h \div 15$

$$
8=h
$$

Area of square $B C D E=\ell^{2}$

$$
\begin{aligned}
& =\frac{8}{8} \times \frac{8}{64} \mathrm{in.}^{2}
\end{aligned}
$$

Area of trapezoid $A C D G=$ area of trapezoid $A B E G+$ area of square $B C D E$

$$
\begin{aligned}
& =\frac{120}{64}+\frac{184}{\mathrm{in}^{2}}
\end{aligned}
$$

The area of trapezoid ACDG is \qquad 184 square inches.
\qquad
\qquad
5. Trapezoid $S T W X$ is made up of parallelogram $S T V Z$, triangle $Z V Y$, and square VWXY. The area of trapezoid STVY is 242 square feet.
Find the area of trapezoid STWX.

Area of trapezoid $S T V Y=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

\qquad
\qquad $=\frac{1}{2}$. \qquad -h
\qquad
\qquad -h
\qquad \div \qquad $=$ \qquad $\cdot h \div$ \qquad

$$
=h
$$

Area of square $V W X Y=\ell^{2}$

$$
\begin{aligned}
& \qquad=\ldots \\
& \text { Area of trapezoid STWX } \\
& =\text { area of trapezoid STVY + area of square } \mathrm{VWXY} \\
& =\square \\
& =\square \\
& \mathrm{ft}^{2} \\
& \mathrm{ft}^{2}
\end{aligned}
$$

The area of trapezoid STWX is \qquad square feet.
6. In the figure below, trapezoid PRST is made up of three triangles, and figure PQST is a parallelogram. Find the area of triangle PQS if the area of trapezoid PRST is 162.5 square centimeters.

7. In the figure below, trapezoid $B C D E$ is made up of three triangles, and figure CDEF is a parallelogram. Find the area of triangle CEF if the area of trapezoid $B C D E$ is 171 square feet.

8. In the figure below, trapezoid DEFG is made up of triangle $M H K$ and two identical parallelograms DEHM and MKFG. The area of triangle MHK is 105 square inches. Find the area of trapezoid DEFG.

8. Area of trapezoid $W X Y Z=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$$
\begin{aligned}
\underline{540} & =\frac{1}{2} \cdot h \cdot(\underline{22}+\underline{38}) \\
\underline{540} & =\frac{1}{2} \cdot h \cdot \underline{60} \\
\underline{540} & =\frac{1}{2} \cdot \underline{60} \cdot h \\
\underline{540} & =\underline{30} \cdot h \\
\underline{540} \div \underline{30} & =\underline{30} \cdot h \div \underline{30} \\
\underline{18} & =h
\end{aligned}
$$

The height of trapezoid $W X Y Z$ is $\underline{18}$ inches.
9. 34 meters
10. 23 feet
11. a) Area of trapezoid CDEF $=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$$
\begin{aligned}
\underline{832} & =\frac{1}{2} \cdot h \cdot(\underline{28.6}+\underline{13}) \\
\underline{832} & =\frac{1}{2} \cdot h \cdot \underline{41.6} \\
\underline{832} & =\frac{1}{2} \cdot \underline{41.6} \cdot h \\
\underline{832} & =\underline{20.8} \cdot h \\
\underline{832} \div \underline{20.8} & =\underline{20.8} \cdot h \div \underline{20.8} \\
\underline{40} & =h
\end{aligned}
$$

The height of trapezoid CDEF is 40 feet.
b) Area of triangle $F D E=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{13} \cdot \underline{40} \\
& =\underline{260} \mathrm{ft}^{2}
\end{aligned}
$$

The area of triangle FDE is $\underline{260}$ square feet.

Lesson 10.3

1. Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{14} \cdot \underline{9.6} \\
& =\underline{67.2} \mathrm{~cm}^{2}
\end{aligned}
$$

Area of pentagon
$=\underline{5} \cdot$ area of triangle
$=\underline{5} \times \underline{67.2}$
$=\underline{336} \mathrm{~cm}^{2}$
The area of the pentagon is $\underline{336}$ square centimeters.
2. 97.5 square inches
3. Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{20} \cdot \underline{17.3} \\
& =\underline{173} \mathrm{~cm}^{2}
\end{aligned}
$$

Area of hexagon
$=\underline{6} \cdot$ area of triangle
$=\underline{6} \times \underline{173}$
$=1,038 \mathrm{~cm}^{2}$
The area of the tablemat is 1,038 square centimeters.
4. 940.5 square inches

Lesson 10.4

1.

2.

3. a) Area of square $=\ell^{2}$

$$
\begin{aligned}
\underline{81} & =\ell^{2} \\
\sqrt{81} & =\ell \\
\underline{9} & =\ell
\end{aligned}
$$

Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{15} \cdot \underline{9} \\
& =\underline{67.5} \mathrm{ft}^{2}
\end{aligned}
$$

The area of the triangle NPQ is 67.5 square feet.
b) Area of trapezoid $M P Q R$
= area of square $M N Q R$ + area of triangle NPQ
$=\underline{81}+\underline{67.5}$
$=\underline{148.5 \mathrm{ft}^{2}}$
The area of trapezoid MPQR is 148.5 square feet.
4. a) 7 inches
b) 49 square inches
c) 105 square inches
5. Area of trapezoid $S T V Y=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$$
\begin{aligned}
\underline{242} & =\frac{1}{2} \cdot h \cdot(\underline{18}+\underline{18}+\underline{8}) \\
\underline{242} & =\frac{1}{2} \cdot h \cdot \underline{44} \\
\underline{242} & =\frac{1}{2} \cdot \underline{44} \cdot h \\
\underline{242} & =\underline{22} \cdot h \\
\underline{242} \div \underline{22} & =\underline{22} \cdot h \div \underline{22} \\
\underline{11} & =h
\end{aligned}
$$

Area of square $V W X Y=\ell^{2}$

$$
\begin{aligned}
& =\underline{11} \cdot \underline{11} \\
& =\underline{121} \mathrm{ft}^{2}
\end{aligned}
$$

Area of trapezoid STWX

$$
\begin{aligned}
= & \text { area of trapezoid STVY } \\
& + \text { area of square } V W X Y \\
= & \underline{242}+\underline{121} \\
= & \underline{363} \mathrm{ft}^{2}
\end{aligned}
$$

The area of trapezoid STWX is $\underline{363}$ square feet.
6. 65 square centimeters
7. 49.5 square feet
8. 495 square inches

Chapter 11

Lesson 11.1

1. 3.236
2. 5.051
3. 4.65
4. 7.755
5. 18.48
6. 18.84
7. 3.56
8. 0.34
9. 22
10. 60
11. 20.1
12. 1.0
13. $\overline{J M}$ and $\overline{K N}$.
14. $\overline{H K}$. It does not pass through the center O.
15. $\overline{O J}, \overline{O K}, \overline{O L}, \overline{O M}$, and $\overline{O N}$.
16. Diameter $=$ radius $\times \underline{2}$

$$
\begin{aligned}
& =\underline{13} \times \underline{2} \\
& =\underline{26} \mathrm{ft}
\end{aligned}
$$

The diameter of the circle is $\underline{26}$ feet.
17. 6.5 feet
18. Radius $=$ diameter $\div \underline{2}$

$$
\begin{aligned}
& =\underline{32} \div \underline{2} \\
& =\underline{16} \mathrm{in} .
\end{aligned}
$$

The radius of the circle is $\underline{16}$ inches.
19. 12.3 centimeters
20. Circumference $=\pi d$

$$
\begin{aligned}
& \approx \frac{22}{7} \cdot \underline{21} \\
& =\underline{22} \cdot \underline{3} \\
& =\underline{66} \mathrm{in} .
\end{aligned}
$$

The circumference of the wheel is approximately 66 inches.
21. 125.6 millimeters
22. Circumference $=\pi d$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{15} \\
& =\underline{47.1} \mathrm{in} .
\end{aligned}
$$

Length of semicircular arc
$=\frac{1}{2} \times$ circumference
$=\frac{1}{2} \times \underline{47.1}$
$=\underline{23.55} \mathrm{in}$.
The length of the ruler is approximately 23.55 inches.
23. 64.25 centimeters
24. Circumference $=2 \pi r$

$$
\begin{aligned}
& \approx 2 \cdot \underline{3.14} \cdot \underline{25} \\
& =\underline{157} \mathrm{in} .
\end{aligned}
$$

Length of arc of quadrant
$=\frac{1}{4} \times$ circumference
$=\frac{1}{4} \times \underline{157}$
$=\underline{39.25} \mathrm{in}$.
The length of the arc of the quadrant is approximately 39.25 inches.
25. 77 millimeters
26. Circumference $=\pi d$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{26} \\
& =\underline{81.64} \mathrm{~cm}
\end{aligned}
$$

Length of arc of quadrant
$=\frac{1}{4} \times$ circumference
$=\frac{1}{4} \times \underline{81.64}$
$=\underline{20.41} \mathrm{~cm}$
Distance around the figure
$=$ length of arc of quadrant $+6 \cdot \underline{\frac{26}{2}}+2 \cdot \underline{26}$
$=20.41+\underline{78}+\underline{52}$
$=\underline{150.41} \mathrm{~cm}$
The distance around the figure is approximately 150.41 centimeters.
27. 50 inches
28. 58.5 feet

Lesson 11.2

1. Area $=\pi r^{2}$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{5} \cdot \underline{5} \\
& =\underline{78.5} \mathrm{~cm}^{2}
\end{aligned}
$$

The area of the circle is approximately 78.5 square centimeters.
2. 12,474 square millimeters
3. Radius $=$ diameter $\div 2$

$$
\begin{aligned}
& =\underline{56} \div 2 \\
& =\underline{28} \mathrm{ft}
\end{aligned}
$$

Area of circle $=\pi r^{2}$

$$
\begin{aligned}
& \approx \frac{22}{7} \times \underline{28} \times \underline{28} \\
& =\underline{2,464} \mathrm{ft}^{2}
\end{aligned}
$$

The area of the circle is approximately 2,464 square feet.
4. 34,650 square meters

